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Abstract—The formulation and evaluation of a recently developed multigrid finite difference calculation
procedure for steady three-dimensional magnetohydrodynamic (MHD) flows are described. This procedure
solves, in primitive variables, the parabolized steady-state MHD equation set, which consists of the mass
continuity equation, three momentum equations, the encrgy equation, the turbulent kinetic energy and
dissipation rate equations, and Maxwell's equations using a full approximation storage block implicit
multigrid finite difference technique. This new technique is first validated by comparing predicted results
with experimental data for supersonic and subsonic Faraday generators. The performance of this technique
is then assessed in terms of computational speed and solution accuracy. It is shown that the resolution of
Maxwell’s elliptical electrical equations is computationally speed limiting. A global improvement factor of
3-5 is obtained by using the multigrid finite difference solution procedure.

1. INTRODUCTION

THE INTERACTION of a magnetic field with an elec-
trically conducting gas in magnetohydrodynamic
(MHD) generators produces flow phenomena that are
inherently three-dimensional in nature. These three-
dimensional effects manifest themselves in many
forms: velocity overshoots in the boundary layers,
flow asymmetries produced by secondary flows. and
distorted temperatures and current fields. Much pro-
gress in predicting three-dimensional hydrodynamic
and electric effects in MHD generators has already
been made by several investigators [1-8]. These
authors have successfully developed, tested, and vali-
dated single-grid three-dimensional MHD com-
putational techniques and computer codes for these
types of flows. Although these computer codes are
useful and powerful, they are slow in execution.
Accurate solution of practical three-dimensional
MHD flows is usually expensive in computer time and
storage requirements because many computational
nodes are necessary for establishing grid-independent
solutions.

The purpose of this paper is to describe the for-
mulation and the evaluation of a recently developed,
efficient, multigrid finite difference calculation pro-
cedure for steady three-dimensional MHD flows. This
procedure solves the parabolized steady-state MHD
equation set, which consists of the mass continuity
equation, three momentum equations, the energy
equation, the turbulent kinetic energy and dissipation
rate equations, and Maxwell’s equations using a full
approximation storage (FAS) block implicit multigrid
method (BLIMM).

2. MHD MODEL

2.1. Hydrodynamic model

Flow phenomena in MHD channels can be rep-
resented by the three-dimensional Navier-Stokes
equations. Since this flow is predominantly along the
axial direction, certain simplifications can be made by
consideration of the order of magnitude of various
terms. The simplification made here is referred to as
the parabolic approximation [9, 10]. Because the flow
velocities in the channel are high, the effects of tur-
bulence must be accounted for. In the present paper,
a two-equation (k—¢) model is used, and the turbulent
fluxes are represented as the product of turbulent vis-
cosity and the gradients of the flow variables (Tables
1 and 2).

The turbulent viscosity is calculated from the local
valucs of turbulent kinetic energy (k) and its dis-
sipation rate (&), using the following formula :

k2
= pCu ? . (])

The different values of the constants used in the tur-

bulent model are presented in Table 3.
In addition, because of steep near-wall gradients,

Table 1. Magnetohydrodynamic model

div (pU¢ —TI"* grad ¢) = S¢ (T1)
rotE=0, divd =0 (T2)
J=o(E+UxB)—(8/B)JxB {(T3)
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NOMENCLATURE
B, B* magnetic field [T], right-hand side of

Greek symbols

equation (21) on grid k B Hall parameter
¢ electrode width [m] 7 diagonalization angle [deg]
C,, C,, C, constants in the turbulence model re generalized diffusion coefficient in
D dissipation term in enthalpy equation equation (1) in Table |
[Wm 7 o tolerance adjustment factor
ey norm error on grid k £ dissipation rate of turbulence energy
E, constant in wall function [W kg~ ', tolerance residual on grid k
E, value of F at zero roughness it cross-section electrical potential [V]
E electric field vector [Vm™'] 1, 7, components of y after decomposition
E  E., E components of E [m, V respectively]
ERCONT continuity equation normalized K Von Karman’s constant used in the wall
residuals function
ERPOT electric potential residuals of i turbulent viscosity [kgm~'s™']
equations (9) I laminar viscosity [kg m~'s™']
G generation of turbulence energy [W m °] P fluid density [kg m™7]
h static enthalpy [J kg™ '] | laminar Prandtl number
H channel height (distance between a4 Gis ¢, turbulent Prandtl numbers for A,
electrode walls) [m] k,and ¢
1 prolongation or restriction operator a electric conductivity [Sm™']
1, load current [A] o, a/(1+ B2
J J,. J. current components in x, y, and z 7 shear stress [Pa]
directions [Am 7] ¢ flow variable
J current vector ] electrical potential [V].
k turbulent kinetic energy [J kg™ "
K load factor Subscripts
L elliptic operator 1 laminar, electrical load
p static pressure [Pa] new new values in an iteration scheme
pi electrode pitch [m] old  old values in an iteration scheme
p pressure field in axial momentum p first nodal point away from the
equation [Pa] wall
P, heat transfer resistance of laminar t turbulent value
sublayer w wall
Py value of P, at zero roughness X, ¥,z x » and z direction values.
Q.  wall heat flux [Wm "2
R external load resistance [Q] Superscripts
R, roughness Reynolds number c variable value on coarse grid
s? source term for the flow variable ¢ f variable value on fine grid
t time [s) k intermediate grid level
T temperature [K] M finest grid level
U velocity vector T transposc of a tensor
u, v, w components of velocity vector in x, P dependent variable in differential
v, and = directions [ms™ ') equation.
w¥, W*  solution vector in the multigrid
algorithm Operators
W width of channel cross-section \% gradient
x, 3, z coordinate directions [m] v divergence
Ve equivalent roughness height [m}]. { ) cross-section average.

wall functions must be used at the near-wall nodes.
Wall functions are necessary to avoid using very fine
grids near the wall [11]. Based on the assumption that
a logarithmic velocity profile prevails in the region
between the wall and the near-wall node P, the axial
velocity and the wall shear stress are related by the
following expression :

WF’ ! In (EL&’\/(TW /1)) (2)

J@p) ® 0

where the subscript p indicates that the values are
those at grid node P, and the subscript w indicates the
values at the wall; Yo is the distance from the wall,
and k and E, are the log-law constants (x = 0.4 and
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Table 2. Diffusion coefficients and source terms for equations
in Table 1 in the x, y, z coordinate system

Equation ¢ re S
Continuity 1 0 0
op
Momentum U i
é
[T T - f —J.B
ap
Wt —a B

mo ép  op  op J?

. R TR AT
Enthalpy h P Uas +u 3y +w = + . +
Turbulent ecnergy k& + 51 G—pe
k
Turbulent &+ % C,Gelk—C,pe*lk
Dissipation rate
D= (r+1): VU, G=r1: VU, 1 =pu(VU+VU),

7 = 1 (VU +VUD).

Table 3. k-¢ model constants

5 C, C, Ok g, T

0.09 1.44 1.92 1.0 1.3 0.9

E. = E, = 8.12); W, is the resultant velocity at P and
is assumed to be parallel to the wall shear stress. The
node P is chosen so that the local turbulent Reynolds
number (p\/ky/w), is much greater than unity.

Note that no provision for turbulence damping
effects by magnetic fields is given in the turbulence
modeling presented in Table 2. The shear stress in the
fluid layer between the node P and the wall is then
related to the turbulent kinetic energy because, in the
uniform-shear-stress layer, the generation and dis-
sipation of k are ncarly in balance. This leads to the
following relation :

T, = Tu = p\/Cﬂkp. 3)

The rate of dissipation of kinetic energy ¢, near the
wall is fixed by the requirement that the length scale
varies linearly with distance from the wall; the cor-
responding expression for ¢, is then given by [6]

b = k3 (cr,) )

where k, is the near-wall turbulent kinetic energy. The
quantity k, is calculated from the regular balance
equation, but with the following changes. First, the
diffusion of turbulent kinetic energy is set equal to
zero. The generation term in the kinetic energy equa-
tion is then modified to account for the value of wall
shear stress calculated using equation (3). The dis-
sipation term is also modified in light of equation (4),
and is assigned an average value over the control
volume for the near-wall node. Thus,
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where y. is the distance between the edge of the control
volume and the wall.

The wall functions for the transport of temperature
(or enthalpy) are derived in a manner similar to equa-
tion (2). The near-wall variation of enthalpy is also
assumed to be logarithmic, the expression being

hy —hy LA EA NG
"Q\\/(Twp) = In < " > +P, (6)

w 1

where 1, is given by equation (3), Q,, represents the
convection heat flux from the wall, and / represents
the static enthalpy. The term P, (absent in equation
(2)) represents the additional resistance to the transfer
of heat caused by the existence of the laminar sublayer
(from Launder and Spalding [11]).

The values of P, and E, are modified to account
for rough surfaces. In the approach followed here
(recommended by Jayatillaka [12]), the constants E,
and P, are related to the equivalent sand grain rough-
ness [6, 13].

2.2. Electrical model

The complete steady-state three-dimensional finite
segmentation solution of the electrical field, the poten-
tial, and current densities for an MHD generator
requires an elliptical three-dimensional calculation
procedure, which is usually slow and requires a large
computer memory.

The effects of finite segmentation on the global per-
formance of MHD generators become negligible for
medium or large base load generators that have a
pitch-to-height ratio of the order of 1-5% [14, 15]. For
smaller generators, finite segmentation effects become
more important and should be considered. For such
generators, infinite segmentation analysis usually
overpredicts their global performance [15, 16].

In this paper, we present and use the cross-plane
infinite segmentation electrical model formulated by
Ahluwalia and Vanka [17]. Their model was suc-
cessfully applied to the three-dimensional analysis of
Faraday, diagonal-insulating and diagonal-con-
ducting side-wall MHD generators [6, 14, 16, 17]. This
model is coupled to the gas dynamic model as
explained below.

The electrical governing equations consist of
Maxwell’s steady-state equations (equation (T2),
Table 1) and Ohm’s law (equation (T3), Table 1).
Because of the form of equation (T2) in Table I, it is
possible to define an electric potential y such that

E=—Vy. 7

In the following discussion, it is assumed that the
magnetic field B is uniform in the channel cross-
section and is oriented along the x direction. Con-
sequently, the vector notation is dropped in the
following discussion.
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The infinite segmentation model is constructed
from equation (T2) in Table | by neglecting axial
variations of the flow and electrical variables in com-
parison with their cross-plane variation. Consc-
quently, the Hall electric field E. is assumed to be
constant in a cross-section plane. The clectric poten-
tial ¥ can be expressed as [6, 14-17]

Y= —zE 4n(x,y). (8)

The first term in equation (8) represents the con-
tribution of the Hall electric field E., and 5 is the
electrical potential in the cross-section planc. Sub-
stituting equation (8) into equation (7) and equation
(T2) in Table 1 results in the following equation for
the two-dimensional function x(x, y):

¢ on ¢ an é
eV Do) = E 2 (Bo,
dx (rr Pr) + dy (J" (?y) Toy (Bo.)

-

— o Bov—Bo)] (9)
¢y

where ¢, = ¢/(1+ B?). Since E. is not known a priori,
the following potential decomposition is adopted :

n(x,y) = Eopy(x, p) +172(x, ). (10

The two functions #, and x, are governed by the
following equations:

-~

[
Linl= Ej}j(ﬁvu) an
and
é
L[”?] = 6}’ [Olig(wﬂﬁv)] (12)
where the elliptical operator L is defined as
% 3 ) )
e (2 = O
gx \  0x ay oy

Note that the function #, is driven by the con-
ductivity nonuniformity, and #, by both the con-
ductivity and velocity nonuniformities. Both #, and
1, are independent of E., which is reduced to a par-
ameter of the problem. This will be determined later
from the specification of the external electrical con-
nection and loading. Assuming a Faraday electrical
connection, the cross-section averaged Hall current
density <J.> is identically zero. Thus, the Hall electric
field E. may be expressed as:

<on/s %> B (o)

A
<Gn > + <G-n f;’ll">
cy

The current densities J,, J,. and J, are calculated using
Ohm's law (equation (T3), Table 1).

E = — (14)

3. BOUNDARY AND INLET CONDITIONS

Boundary conditions for the functions #, and 7, are
defined by the channel configuration. For a Faraday

J. X. BouiLLarp and G. F. BErRry

~

INSULATOR

H %
/l(w
CATHODE

F1G. 1. Schematic of the Faraday generator configuration.

connection, several types of boundary conditions may
be used for the potential equation [6, 13]. In this
paper, we express the electrical boundary conditions
in terms of the external load resistance. The difference
of potential (5, —n,) and the cross-section average
current density {J.» arc related through the external
resistance { R}, the electrode pitch (p;). and the chan-
nel width { ) by

TP WR = 1y —1,.

From Ohm’s law, J.+ /. = a(E.+vB), which for a
Faraday connection leads to
B> =oyE+L{ar)B.

To obtain decoupled boundary conditions, we assume
that in equation (16),
B> = BT (17)

Combining equations (15), (16), and (17) and noting
the arbitrariness in #,, it follows that

(19)

(16)

hi=n.=0 at y=20 (18}
131:%;%”/’& at y=H (%)
and
{ov)
,=——=BpWR, at p=H. 20
2= piWR,  at (20)

The extent of inaccuracy introduced by the approxi-
mation of equation (17} is generally less than 1% of
the power density [14]. The external resistance and
the electrode pitch are allowed to vary in the axial
direction, with their variations specified as input data
[13]. The Hall electric field £. is determined by equa-
tion (14). This type of Faraday connection with its
associated boundary conditions is presented in Fig. 1.

Slip and no-slip boundary conditions can be
imposed on the velocity ficlds. In the case of a no-slip
boundary condition at the wall, the law of the wall is
used for turbulent flows. In the case of a slip boundary
condition (i.e. symmetry), a zero-derivative condition
is applied to all scalar variables and tangential velocit-
ics. The channel geometry is prescribed through the
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specifications of the axial distributions of the channel
height and width. Boundary conditions for the energy
equations are specified by the imposition of the exper-
imental wall temperature.

4. STATE EQUATIONS

To close the system of fluid dynamic and electrical
equations, it is necessary to establish relationships
between the fluid properties and the selected solution
transport (u, v, w, p, h). Although several alternatives
are possible, in this paper thermodynamic and elec-
trical properties were calculated using the NASA com-
puter code [18] and are curve fitted with fourth-order
interpolation polynomials in p and 4. The ideal gas
law was assumed.

5. SOLUTION PROCEDURE

The MHD model presented in Table 1 is solved by
using a parabolic marching technique in the axial
direction [9] and an elliptic solution procedure in the
cross-stream directions. For elliptic equations, faster
convergence can be obtained by using multiple grids
and continuously cycling the solution on coarse and
fine grids. As a result, ANL developed a new multigrid
computer code called MGMHD [13]. In this code, the
cross-stream plane continuity and elliptic momentum
equations are solved simultaneously by an FAS
BLIMM algorithm [19, 20], and the cross-stream
elliptic potential equations are solved using an FAS
multigrid procedure [21]. The main features of the
MGMHD computer code are described in the fol-
lowing sections.

5.1. The multigrid concept

The concept of the multigrid technique can be
explained as follows. Consider a set of linear finite
difference equations,

LMWM = BM, Q1)

for a general elliptic operator L (for example, equation
(13)), where W is the solution vector. Any iterative
procedure such as Gauss—Seidel, Jacobi, or incom-
plete LU converges rapidly for the first few iterations
and very slowly thereafter. A Fourier analysis of the
error-reduction process shows that these conventional
iterative procedures are most efficient in smoothing
out errors of wavelengths comparable to the mesh
size, but are inefficient in annihilating low-frequency
components. The multigrid technique is based on the
premise that each frequency range of error must be
smoothed on the grid where it is most suitable to
do so. Consequently, the multigrid technique cycles
between coarse and fine grids until all frequency com-
ponents are appropriately smoothed.

The multigrid method cycles between a hierarchy of
computational grids D* with corresponding functions
W k=1,2,..., M. The step size on D* is A, and
M\ = h/2, so that D* becomes finer as k increases.
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The solution of equation (21) is ultimately searched
on the finest grid k = M. The auxiliary coarse grids,
k=1,2,..., M—1 are only used to accelerate the
convergence rate of the relaxation procedure (iter-
ation) as explained below. By doubling the mesh size
in the x and y directions (see Fig. 2, which shows the
full coarsening technique), several levels of auxiliary
coarse grids (k = 1,..., M—1) are thus generated.

In the FAS procedure, the solution is initialized on
the finest grid M (see Fig. 3). When the relaxation
procedure (iteration) fails to smooth the residuals at
the desired theoretical rate on the finest grid M, the
iterations are stopped on grid M and the residuals
(BM — LMw™ = RM; w™ is an approximation to W™
are transferred to the next coarser grid (restriction).
On the coarser grid D*~', the equation solved is

LW = B (B - L)~ R (22)

where L*~' is the operator on grid D*~ ', and I}~ ' is
the operator to restrict (project) the k variables on
grid k— 1. If the residuals R* ' of equation (22) do
not meet the tolerance level on grid k—1, R~ 'is
restricted to grid £ —2 and a solution of equation (22)
is sought on grid kK —2. When an accurate solution of
equation (22) is obtained, the change from the pre-
vious value w*~'—1{~'w%, is prolongated (bilinear
interpolation) to grid £. The correction to w* is then

(23)

kK k k=1 k-1 k
Woew = Waig + 15— (w —I; wfyld)'

The iterations on each grid k are continued until
the required convergence criterion |¢f| < & is met, at
which time the solution vector is transferred to the
next finer level (¢f is the tolerance level allowed on
grid k). When the finest level is solved to the desired
accuracy, the overall solution cycle is terminated.

5.2. Sequence of calculation steps

The present procedure offers the economical feature
of a three-dimensional parabolic procedure in the
sense that only a two-dimensional computer storage
is required, even though the flow is three-dimensional
and the more general set of equations is elliptic.
Consequently, axial and cross-stream momentum
equations, as well as the longitudinal and cross-stream
pressure gradients, are decoupled.

For simplicity, the hydrodynamic and electrical

} [ 4 ot
— — T T T T
X teX fox f=x 4=~ = -
bl e ]} e =+
X dox tox dox - 1~ 1=
\ ! I ? ) [ 1 FINE GRID
COARSE GRID y L — caL
X 4% =X 1=x
L /-y vy Ly ‘/—f-
bt o | e
X =X =X | X ++ -
(W I *1 — uf
| ’ f Ve
[ e i b
1 . p*
x p!

F1G. 2. Staggered arrangement of velocities and pressures in
a full coarsening technique.
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F1G. 3. Flow chart of the multigrid adaptive FAS solution cycle (Wa is an approximation to W).

numerical solution schemes are decoupled. The energy
cquation is also solved independently since the tem-
perature influences are only propagated through the
viscosity and the density, which are kept constant in
the iterative solution of the momentum and continuity
equations. Since several equations are decoupled from
the others, the following sequence is adopted at each
axial section until the exit of the channel is reached :

1. New fluid properties are evaluated at the new
axial station from the enthalpy and pressure cal-
culated at the previous axial station.

2. The electrical potential equations are solved
using an FAS multigrid procedure, and the elec-
tric currents and fields are then calculated.

3. The axial momentum equation is solved using
the pressure gradient evaluated at the previous
axial station with a single-grid Gauss—Seidel
point relaxation technique. The axial velocity and
pressure gradient are adjusted to satisfy the inte-
gral mass-conservation equation.

4. Cross-sectional plane velocity and pressure fields
are solved using an FAS BLIMM algorithm [19].

5. The equations for the turbulent kinetic energy,

its dissipation rate, and the enthalpy are then
solved using a single-grid Gauss—Seidel point
relaxation technique.

The cross-section averaged pressurc p is updated using
its value at the previous station and the newly cal-
culated axial pressure gradient (step 3). At the inlet
station, variables are initialized with specified values.

6. PROCEDURE VALIDATION:
COMPUTATIONAL RESULTS AND
COMPARISON WITH EXPERIMENTAL DATA

The MGMHD computer code was developed to
predict the three-dimensional flow and electrical per-
formances of several Faraday and diagonal gener-
ators. Two simulations, for supersonic and subsonic
Faraday generators, are briefly reported in this paper.
Reference [13] presents detailed information on these
simulations. The purpose of these two examples of
Faraday generator calculations is to show that the
calculation procedure is adequate to represent the
main characteristics of Faraday generators. The com-
putational performance of the multigrid technique
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applied to the three-dimensional Faraday generator
model is emphasized in the following sections.

6.1. Supersonic Faraday generator : the AEDC channel
(test 14)

The commercial-scale MHD Faraday generator of
the High-Performance Demonstration Experiment
(test 14) [22, 23] of the Arnold Engineering Devel-
opment Center (AEDC) was simulated using the
MGMHD computer code. In this test, the generator
is operated in a supersonic mode and delivers an elec-
trical power of about 23 MWe. The AEDC channel
is approximately 8.9 m long, with a magnet of 7 m
active length that can deliver a peak magnetic field of
3.2 T. The rectangular channel cross-section is non-
uniform with a 0.49 m x 0.26 m cross-section at the
channel inlet and a 0.99 m x 0.82 m cross-section at
the exit. Figure 4 shows the axial distributions of the
height and width of the channel and the magnetic field
strength.

The channel contains 472 electrode pairs with vari-
able electrode pitch. The first loaded electrode is
located 0.82 m from the channel entrance. There is
almost constant resistive loading parameter (resi-
stance x electrode pitch) of about 0.8 Q- m along the
channel up to Z =7.7 m, and then the channel is
gradually unloaded over the last 0.6 m to prevent
unacceptable voltage gradients in the magnetic field
fringe.

The channel wall temperature distribution is taken
to be the distribution estimated by AEDC at the time
t =5 s, at which steady-state conditions and good
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experimental data were obtained. The AEDC-esti-
mated surface temperature is 1200 K at the channel
entrance, which drops rapidly to about 850 K at
Z = 1.5 m and then gradually decreases to 600 K at
the channel exit. The resistive loading was originally
selected to give a low supersonic velocity over the
entire channel length at a magnetic field strength of
up to 4 T. The nominal distributions of the resistive
loading parameter, the magnetic field, and the wall
temperature along the channel are given in refs.
[22, 23].

In the following discussion, a vertical plane of sym-
metry through the center of the channel is assumed.
This assumption of symmetry is legitimate because
the electrical potential and hydrodynamic equations
admit the central vertical plane as a plane of symmetry
and because the selected inlet and boundary con-
ditions arc assumed uniform. A grid of 28 x 12 com-
putational nodes with three grid levels is used. The
axial step size is 4 cm. The plasma enters the channcl
with the inlet conditions shown in Table 4.

Figure 5 shows the calculated development of the
transverse channel cross-section velocities at four
axial locations along the generator length. First, in
the inlet region of the duct (0-2 m), the flow diverges
outwardly from the core region to the walls.

The center of divergence is not at the center of the
channel but rather about one-third from the top of
the channel. As the flow progresses downstream, two
vortex patterns in the left and right sides of the channel
are created because symmetry is assumed. Further
down the channel where magnetohydrodynamic inter-
actions become weaker (Z = 8 m), the flow continues
to expand toward the duct walls, keeping strong
secondary velocities in the side-wall regions. The
maximum secondary flow velocity is about 80 m s~ "',
which represents about 7% of the inlet velocity. An
axial cross-section of the flow development shows that
the flow enters the channel uniformly and is accel-
erated in the core of the channel (Fig. 6).

The flow does not separate at the walls and is super-
sonic throughout the channel. The predicted axial
flow velocity in the cathode region is larger than that
in the anode region, as illustrated in Fig. 6. This trans-
lates into a prediction of a greater shear stress and
thus of a greater skin friction coefficient in the cathode
wall region if the skin friction coefficient is defined
upon the inlet central axial velocity.

A more illustrative representation of the axial vel-
ocity distribution is shown in Fig. 7 by means of

Table 4. Inlet conditions for the AEDC Faraday gencrator

Mass flow rate (kg s™') 49
Temperature (K) 2804
Pressure (bar) 2.56
Conductivity (Sm™") 10.20
Hall parameter 2.18
Axial velocity (ms™") 1153
Mach number 1.21
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FI1G. 5. Development of secondary flow vortices in the AEDC channel (test 14).
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velocity surface plots. As can be seen, only small vel-
ocity overshoots are observed in the side-wall boun-
dary layers, indicating that the strong secondary flows
suppress any flow distortions that could develop in the
transverse cross-section of the channel. Thus, strong
secondary flows tend to establish uniform dis-
tributions of the axial velocity and temperature, which
improve the global performance of the generator and
limit the risks of MHD instabilities by current con-
strictions.

The predicted hydrodynamic and electrical per-
formances of the AEDC test 14 were found to be in

relatively good agreement with previously published
predictions and experimental data, as can be seen in
Fig. 8.

6.2. Subsonic Faraday generator: the IEE MARK I1
generator

The MARK II generator of the Institute of Elec-
trical Engineering (IEE) facility is an experimental
subsonic segmented 2 MWe Faraday generator
designed for short-duration tests [24-27]. The gen-
erator is fired by combustion of diesel fuel in pure
oxygen. As can be seen in Fig. 9, the axial pressure
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(AEDC, test 14).

MWe) is in close agreement with that experimentally
measured (1.60 MWe), as shown in Fig. 10 [24-27].
Further details regarding the comparison of the pre-
dicted and experimental results for the ITEE MARK

distribution compares well with experimental data.
The channel is operated subsonically, and the plasma
is mildly accelerating at the end of the channel active
length. The predicted extracted electrical power (1.57
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F1G. 9. Comparison of the predicted axial distribution of the
pressurc with experimental data for the MARK I subsonic
Faraday generator.

1T and AEDC generators can be found in Bouillard et
al. [13, 28]. Due to space limitations, these details have
been intentionally omitted in this paper; instead,
the computational performances of the multigrid
procedure have been emphasized in the following
sections.

7. PROCEDURE COMPUTATIONAL
PERFORMANCE

The performance of the multigrid (MGMHD) com-
puter program was assessed and compared with that
of the single-grid version (SGMHD) developed earlier
by Vanka et al. [6]. The SGMHD computer code
incorporates the same hydrodynamic and electrical
models as described above. The SGMHD computer
code also uses a similar marching technique in the
flow direction, but, unlike MGMHD, it solves the
uncoupled cross-sectional momentum and electrical
equations using a single-grid alternating direction
implicit (ADI) technique. In the following perfor-
mance assessments and comparisons, the same plas-
ma properties are used with both codes. The cal-
culations were performed on an IBM PC-AT
desktop computer equipped with a 32-bit coprocessor
board.t

It is instructive to assess the performance of an
algorithm by quantifying the workload of each indi-
vidual task constituting the total calculation
procedure. Such a task repartition is shown in Table
5 for several channel sections of the AEDC (test 14)
generator. In this table, the global calculation pro-
cedure is first divided into five tasks: the multigrid
solution of the cross-plane hydrodynamic and elec-
trical equations, and the single-grid solution of the
energy, axial momentum, and k— equations. Then,
each multigrid task is subdivided into subtasks repre-
senting the work done on each individual grid. The
CPU times of each task are expressed in terms of the

1 DSI-750+ /4 Megabytes, 32-bit coprocessor implemented
on a PC-AT. Definicon Systems Inc. and Westlake Village
and CA 91362.
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number of fine-grid iterations and work units (WUs).
In the multigrid procedure, a work unit is defined as
the equivalent fine-grid iteration number required to
perform a particular task. The computational work
done on the coarser grids is expressed in terms of fine-
grid iteration numbers (ie. WU = NITERM+
NITERY /4 +NITER* ~%/4>+ ... where NITER*
is the iteration number on grid k).

Table 5 displays the averaged computational work-
load of each task per axial step, which is calculated
by averaging the total workload of each task for each
section of the channel. The most expensive task is the
electrical potential solution, which represents about
69% of the total computational workload. The multi-
grid computational work for the solution of the cross-
plane momentum equations is relatively small and
represents only about 2% of the total computation
workload. Single-grid CPU time spent on the energy,
axial momentum, and k—¢ equations represents about
28% of the total computational workload. For the
same problem (i.e. identical number of cells, cell size,
and imposed residual errors), a typical breakdown of
a single-grid procedure such as that used in SGMHD
is shown in Table 6.

The solution of the single-grid electrical potential
equation is by far the most expensive task and repre-
sents about 98% of the total computational workload.
Note that the accuracy (ERPOT = 107?%) of the
potential equations used in these calculations is some-
what high, and an accuracy ranging between 10~ ' and
5x 1072 is usually suitable for most problems. Tables
5 and 6 show that for an imposed error of 10 % on
the potential equations, the MGMHD is about five
times faster than a single-grid code, such as the
SGMHD, for the test presented here.

A direct comparison of the convergence history of
the potential residuals between the SGMHD and the
MGMHD computer codes is presented in Fig. 11 for
the first meter of the channel. This figure depicts the
advantage of the multigrid technique as applied to
the electrical potential equations (i.e. operator L of
equation (13)).

The multigrid procedure allows a drastic reduction
of the electric potential error—five orders of mag-
nitude in less than 100 iterations (compared to 300

+ Experimentat
— Theory

Power (MWe)

0.54 +

o ; T T
0 t

2 3
Channel Length {m)

F1G. 10. Comparison of the predicted axial distribution of
the electrical power with experimental data for the MARK
II subsonic Faraday generator.
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FiG. 11, Comparison of rates of convergence for the electrical

potential solution between the single-grid (SGMHD) and

multigrid (MGMHD) computer codes (12 x 28 nodes, axial
step size Az = 0.04 m),

iterations needed with SGMHD). Figure 11 provides
a quick assessment of the computational performance
of the multigrid procedure. For example, at an error
residual of 2 x 1072, the computational speed using a
multigrid solution technique is improved by a factor
of 3, which is also reflected in the total CPU execution
time shown in Table 7.

J. X. BounLLarp and G. F. BErry

Table 7. Comparison of CPU time between the multigrid
and the single-grid techniques for a Faraday channel simu-
lation (for the total length of the channel)

Multigrid Single-grid
ERPOT (min)t {min)t Speed-up
10 Unstable Unstable —
l Unstable Unstable —
0.1 34 65 2
0.02 50 150 3

+PC-AT CPU time.

8. CONCLUSIONS

A new multigrid, three-dimensional solution pro-
cedure was developed and illustrated by simulations
of supersonic (AEDC) and subsonic (MARK 1)
Faraday generators. Validated with previously pub-
lished predictions and experimental data, this new
procedure performs about three to five times faster
than the standard single-grid solution procedure.
With the multigrid procedure, more detailed three-
dimensional channel calculations can readily be per-
formed for design purposes. Although the MHD
model presented in this paper is not a comprehensive
model, the multigrid methodology described herein
can easily be extended to incorporate new features

Table 5. Typical breakdown of the MGMHD procedure averaged computational workload per axial step for the AEDC
Faraday channel simulation (ERPOT = 1072, ERCONT = 5x 10~ *; 12 x 28 nodes, Az = 0.04 m)

Cross-plane Cross-plane
potentials momentum
Iterations Iterations
on grid no. on grid no. Axial
———— Energy momentum k-
Channel length (m) { 2 3 wuU 1 2 3 WU (W) (WU (W)
0.0-0.2 316 64 36 72 2 3 2 3 4 6 16
0.2-0.4 324 66 38 75 0 0 I | 4 5 16
0.4-0.6 194 56 30 56 0 0 1 [ 4 5 4
0.6-0.8 120 48 26 46 0 0 1 { 4 5 14
0.8-1.0 160 58 28 52 0 0 1 1 4 5 14
Average task totals 61 2 4 6 15

Total WU : 88

Global PC-AT CPU time = 6 min.

Table 6. Typical breakdown of the SGMHD procedure averaged computational
workload per axial step for the AEDC Faraday channel simulation
(ERPOT = 107% ERCONT = 5x1077%; 12x 28 nodes, Az = 0.04 m

Channel length Cross-plane  Cross-plane Axial

(m) potentials momentum Energy momentum k-¢

0.0-02 2564 9 6 7 I8

0.2-04 2052 i 6 7 16

0.4-0.6 1202 1 5 6 14

0.6-0.8 640 4 5 6 14

0.8-1.0 724 I 5 6 4
Average WU per task 1437 4 6 7 16

Average WU 1470

Global PC-AT CPU time = 33 min.
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and/or new models. Such features could be the incor-
poration of power take-off regions at the inlet and
the exit of the channel, requiring mixed boundary
condition treatment for the electrical potential equa-
tions in regions of interest.
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PERFORMANCES D’UNE PROCEDURE DE CALCUL MULTIGRILLE
TRIDIMENSIONNELLE POUR LES GENERATEURS
MAGNETOHYDRODYNAMIQUES

Résumé—On décrit la formulation et 'évaluation d’une procédure récemment développée de calcul multi-
grille aux différences finies pour des écoulements magnétohydrodynamiques tridimensionnels (MHD).
La procédure résout, en variables primitives, le systéme d’équations MHD parabolisées permanentes qui
est constitué des équations de continuité, d'impulsion, dénergie, de I'énergie cinétique de turbulence, de
dissipation de turbulence et des équations de Maxwell, en utilisant une technique multigrille, implicite de
différences finies. Cette nouvelle technique est tout d’abord validée en comparant les résultats de la prévision
avec des données expérimentales pour les générateurs de Faraday supersoniques et subsoniques. Les
performances de cette technique sont estimées en termes de vitesse de calcul et de précision de la solution.
On montre que la résolution des équations elliptiques de Maxwell est limitante du point de vue vitesse de
calcul. Un facteur global d’amélioration de 3-5 est obtenu en utilisant la procédure multigrille de différences
finies.

DIE LEISTUNGSFAHIGKEIT EINES DREIDIMENSIONALEN MEHRFACHGITTER-
VERFAHRENS ZUR BERECHNUNG MAGNETOHYDRODYNAMISCHER GENERATOREN

Zusammenfassung—Es wird die Formulierung und Auswertung eines kiirzlich entwickelten Mehrfachgitter
Finite-Differenzen-Verfahrens zur Berechnung von stationdren dreidimensionalen magnetohydro-
dynamischen (MHD) Strémungen beschrieben. Der parabolisierte Satz stationarer Gleichungen fiir MHD,
der aus der Massenbilanz, aus 3 Impulsgleichungen, der Energiegleichung sowie den Gleichungen fiir die
turbulente kinetische Energie und die Dissipationsrate und den Maxwellgleichungen besteht, wird mit
einfachen Variablen mit Hilfe der genannten Prozedur geldst. Dabei kommt eine implizite Mehrfach-
gitter Finite-Differenzen-Methode unter Verwendung einer Nédherungsspeicherungsweise zur Anwendung.
Das neue Verfahren wird zuerst durch Vergleich der erzielten Ergebnisse mit Versuchsdaten von Uber-
und Unterschall Faraday-Generatoren validiert. Die Leistungsfahigkeit dieses Verfahrens wird dann
hinsichtlich der Berechnungsgeschwindigkeit und der Genauigkeit bewertet. Es zeigt sich, daB die
Auflosung der elliptischen elektrischen Maxwellgleichungen die Berechnungsgeschwindigkeit beschriankt.
Durch Verwendung der Mehrfachgitter Finite-Differenzen Lsungsprozedur ergibt sich ein globaler Besch-
leunigungsfaktor von 3-5.

3PPEKTUBHOCTh MHOT'OCETOYHOI'O METOJA PACUETA I'EHEPATOPOB
TPECMEPHBIX MATHUTOTUAPOJAUHAMUUYECKUX TEUEHUNA

Annoramms—IIpeacrasnensl GOpMy/IHPOBKa M OLICHKa HEANAaBHO pa3pabOTaHHOTO MHOIOCETOYHOIrO
KOHEYHO-Pa3HOCTHOTO METOJAa pAacuyeTa CTAUHOHAPHBIX TPEXMEPHBIX MAarHHTOTHIPOINHAMHYECKHX
(MI' 1) Teuenuii. C Mcnosib30BAHHEM HESBHOTO MHOTOCETOMHOTO KOHEYHO-Pa3HOCTHOTO METOAA Mpelio-
KEHHAs METOAHKA MO3BOJIAECT PEUINTh B IIPOCTEHIINX NMEPEMEHHBIX CHCTEMY NapaboJIMYECKHX CTaLHO-
HapHbeix MI'J1 ypaBHeHHi, COCTOSILIYIO H3 YpPaBHEHHS HEpa3pblBHOCTH, TPEX YpaBHEHHH HMIyJjibca,
yYpaBHEHHS| JHEPIrUH, YpaBHEHHH TypOyJeHTHOW KHHETHYECKOW JHEPrHH M CKODOCTH IWUCCHNIALMH, a
TakXe ypaBHeHHH Makcsesna. HoBelit MeToa cHavYana anpobupyeTcs MOCPEACTBOM CPaBHEHHS pacyeT-
HBIX Pe3yNbTATOB C JKCNEPUMEHTAJIbHBIMU AdHHBIMH [UIA CBEPX3BYKOBBIX H JO3BYKOBBIX I€HEPATOPOB
®dapanes. 3aTeM 3(PEeCTHBHOCTD METOAA OLCHHBAECTCH IO CKOPOCTH BBIYHCJICHMA W TOYHOCTH PELUCHHUA.
IMokasaHo, 4TO pa3peniaiollas CocCOOHOCTh IUINNTHYECKAX ypaBHeHHH MakcBellsla OrpaHHYHBAET CKO-
pocThb BbruuciIeHNd. C HCHOJIB3OBAaHHEM IMPEIOXECHHOH METONMKM PEIICHHs MoJydeH kodpduumneHT
rIA06BUIBHOTO YTOMHEHHS, COCTABJISIONIHAN 3-5,



