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Abstract-The formulation and evaluation of a recently developed multigrid finite difference calculation 
procedure for steady three-dimensional magnetohydrodynamic (MHD) flows aredescribed. This procedure 
solves. in primitive variables, the parabolized steady-state MHD equation set, which consists of the amass 
continuity equation, three momentum equations, the energy equation, the turbulent kinetic energy and 
dissipation rate equations, and Maxwell’s equations using a full approxi~tion storage block implicit 
multigrid finite difference technique. This new technique is first validated by comparing predicted results 
with experimental data for supersonic and subsonic Faraday generators. The performance of this technique 
is then assessed in terms of computational speed and solution accuracy. It is shown that the resolution of 
Maxwell’s elliptical electrical equations is computationally speed limiting. A global improvement factor of 

3-5 is obtained by using the multigrid finite difference solution procedure. 

1. INTRODUCTION 

Tm INTERACTION of a magnetic field with an elec- 

trically conducting gas in magnetohydrodynamic 
(MHD) generators produces flow phenomena that are 
inherently three-dimensional in nature. These three- 
dimensional effects manifest themselves in many 
forms: velocity overshoots in the boundary layers, 
llow asymmetries produced by secondary flows. and 
distorted temperatures and current fields. Much pro- 
gress in predicting three-dimensio~dl hydrodynamic 
and electric effects in MHD generators has already 
been made by several investigators [I-S]. These 
authors have successfully developed, tested, and vali- 
dated single-grid three-dimensional MHD com- 
putational techniques and computer codes for these 
types of flows. Although these computer codes are 

useful and powerful, they are slow in execution. 
Accurate solution of practical three-dimensional 
MHD flows is usually expensive in computer time and 
storage requirements because many computational 
nodes are necessary for establishing grid-independent 
solutions. 

The purpose of this paper is to describe the for- 
mulation and the evaluation of a recently developed, 
efficient, multigrid finite difference calculation pro- 

cedure for steady three-dimensional MHD flows. This 
procedure solves the parabolized steady-state MHD 
equation set, which consists of the mass continuity 

equation, three momentum equations, the energy 
equation, the turbulent kinetic energy and dissipation 
rate equations, and Maxwell’s equations using a full 
approximation storage (FAS) block implicit multigrid 

method (BLIMM). 

2. MHD MODEL 

Flow phenomena in MHD channels can be rep- 
resented by the three-dimensional Navier-Stokes 
equations. Since this flow is predominantly along the 
axial direction, certain simplifications can be made by 
consideration of the order of magnitude of various 
terms. The simplification made here is referred to as 
the parabolic approximation [9, lo]. Because the flow 
velocities in the channel are high. the etTects of tur- 
bulence must be accounted for. In the present paper, 
a two-equation (li-c) model is used, and the turbulent 
fluxes are represented as the product of turbulent vis- 
cosity and the gradients of the flow variables (Tables 
1 and 2). 

The turbulent viscosity is calculated from the local 
values of turbulent kinetic energy (k) and its dis- 
sipation rate (E), using the following formula : 

(1) 

The different values of the constants used in the tur- 
bulent model are presented in Table 3. 

In addition, because of steep near-wall gradients, 

Table I. Magnetohydrodynamic model 

div (pU4 - f” grad 4) = .P’ 

rot E = 0, div J = 0 

J = cr(E+UxB)-(B/B)JxB 

(Tl) 

(T2) 

(T3) 
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NOMENCLATURE 

B, @ magnetic field [T], right-hand side of Greek symbols 
equation (21) on grid k P Hall parameter 

c electrode width [m] ‘r ’ diagonalization angle [dcg] 
C,, C,, C,, constants in the turbulence model T+ generalized diffusion coefficient in 
D dissipation term in enthalpy equation equation (I) in Table 1 

[W mm’] 6 tolerance adjustment factor 

e 

& 

norm error on grid k e dissipation rate of turbulence energy 
constant in wall function [W kg ‘1, tolerance residual on grid k 

4, value of E at zero roughness ‘I cross-section electrical potential [V] 
E electric field vector [V m ‘1 q,, qz components of q after decomposition 
E,, E, , E_ components of E [m, V respectively] 
ERCONT continuity equation normalized K Von Karman’s constant used in the wall 

residuals function 

ERPOT electric potential residuals of I4 turbulent viscosity [kg mm ’ sm ‘1 
equations (9) 14 laminar viscosity [kg rn- ’ s- ‘1 

G generation ofturbulence energy [W m ‘1 p fluid density [kg m- ‘1 

h static enthalpy [J kg- ‘1 (JI laminar Prandtl number 

H channel height (distance between fflr, Ol* 0,: turbulent Prandtl numbers for h, 

electrode walls) [m] k, and 1: 

/ prolongation or restriction operator (T electric conductivity [S mm ‘1 

1’ load current [A] fl” o/(1 + 8’) 
J,, J,, J_ current components in .Y, _J’. and z z shear stress [Pa] 

directions [A m ‘1 4 flow variable 

J current vector * electrical potential [VI. 

k turbulent kinetic energy [J kg-- ‘] 
K load factor Subscripts 

L elliptic operator 1 laminar, electrical load 

P static pressure [Pa] new new values in an iteration scheme 

PI electrode pitch [m] old old values in an iteration scheme 

ii pressure field in axial momentum P first nodal point away from the 

equation [Pa] wall 

p, heat transfer resistance of laminar t turbulent value 

sublayer W watl 

L” 

value of P, at zero roughness .Y, I’, Z .Y, J’, and z direction values. 

wall heat flux [W m ‘1 

R, external load resistance [Q] Superscripts 

R, roughness Reynolds number C variable value on coarse grid 

S’b source term for the flow variable 4 f variable value on tine grid 

t time [s] k intermediate grid level 

T temperature [K] M finest grid level 

U velocity vector 
11, I’. Ii’ components of velocity vector in x, : 

transpose of a tensor 
dependent variable in differential 

J. and z directions [m s- ‘1 equation. 
M *‘, WA solution vector in the multigrid 

algorithm Operators 

W width of channel cross-section V gradient 
.Y, r, Z coordinate directions [m] V. divergence 

Yr equivalent roughness height [ml. < > cross-section average. 

wall functions must be used at the near-wall nodes. 

Wall functions are necessary to avoid using very fine 
grids near the wall [ 111. Based on the assumption that 

“-+(%~$X~) (2) 

JCL /PI 

a logarithmic velocity profile prevails in the region where the subscript p indicates that the values are 
between the wall and the near-wall node P, the axial those at grid node P, and the subscript w indicates the 

velocity and the wall shear stress are related by the values at the wall; yr, is the distance from the wall, 

following expression : and K and E, are the log-law constants (ti = 0.4 and 
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Table 2. Diffusion coefficients and source terms for equations 
in Table 1 in the x, J, z coordinate system 

Equation 4 l-G5 S” 

Continuity 1 0 0 

Momentum 
+J 

u PI + PC, f?x- 

Turbulent energy k p, + if G-p 

Turbulent I: C,Gclk-Cge’/k 

Dissipation rate 

D=(T,+s,): VU, G=T,: VU, r,=p,(VU+VUT), 
Tt = /L,(VUfVUT). 

Table 3. k-c: model constants 

The values of P, and E, are modified to account 
for rough surfaces. In the approach followed here 
(recommended by Jayatillaka [12]), the constants E, 

and P, are related to the equivalent sand grain rough- 
ness [6, 131. 

C,, C, CZ Oh 0, U/l 2.2. Electricul model 

0.09 I .44 I .92 1.0 1.3 0.9 

E, = E,, = 8.12) ; W,, is the resultant velocity at P and 
is assumed to be parallel to the wall shear stress. The 
node P is chosen so that the local turbulent Reynolds 

number (p,/ky/~,)~ is much greater than unity. 
Note that no provision for turbulence damping 

effects by magnetic fields is given in the turbulence 
modeling presented in Table 2. The shear stress in the 
fluid layer between the node P and the wall is then 
related to the turbulent kinetic energy because, in the 
uniform-shear-stress layer, the generation and dis- 
sipation of k are nearly in balance. This leads to the 
following relation : 

Tp = Tw = p&h,. (3) 

The rate of dissipation of kinetic energy &p near the 
wall is fixed by the requirement that the length scale 
varies linearly with distance from the wall; the cor- 
responding expression for Ed is then given by [6] 

E,, = C$*k,“‘/(tiyp) (4) 

where k,, is the near-wall turbulent kinetic energy. The 
quantity k, is calculated from the regular balance 
equation, but with the following changes. First, the 
diffusion of turbulent kinetic energy is set equal to 
zero. The generation term in the kinetic energy equa- 
tion is then modified to account for the value of wall 
shear stress calculated using equation (3). The dis- 
sipation term is also modified in light of equation (4), 
and is assigned an average value over the control 
volume for the near-wall node. Thus, 

where y, is the distance between the edge of the control 
volume and the wall. 

The wall functions for the transport of temperature 
(or enthalpy) are derived in a manner similar to equa- 
tion (2). The near-wall variation of enthalpy is also 
assumed to be logarithmic, the expression being 

(%$?)) +p, (6) 

where t, is given by equation (3), QW represents the 
convection heat flux from the wall, and /I represents 
the static enthalpy. The term P, (absent in equation 

(2)) represents the additional resistance to the transfer 
of heat caused by the existence of the laminar sublayer 
(from Launder and Spalding [I I]). 

The complete steady-state three-dimensional finite 
segmentation solution of the electrical field, the poten- 
tial, and current densities for an MHD generator 
requires an elliptical three-dimensional calculation 
procedure, which is usually slow and requires a large 
computer memory. 

The effects of finite segmentation on the global per- 
formance of MHD generators become negligible for 
medium or large base load generators that have a 
pitch-to-height ratio of the order of l&S% [14, 151. For 

smaller generators, finite segmentation effects become 
more important and should be considered. For such 
generators, infinite segmentation analysis usually 
overpredicts their global performance [I 5, 161. 

In this paper, we present and use the cross-plane 
infinite segmentation electrical model formulated by 
Ahluwalia and Vanka [17]. Their model was suc- 
cessfully applied to the three-dimensional analysis of 
Faraday, diagonal-insulating and diagonal-con- 
ducting side-wall MHD generators [6, 14, 16, 171. This 
model is coupled to the gas dynamic model as 
explained below. 

The electrical governing equations consist of 
Maxwell’s steady-state equations (equation (T2), 
Table I) and Ohm’s law (equation (T3), Table I). 
Because of the form of equation (T2) in Table I, it is 

possible to define an electric potential $ such that 

E = -VI/J. (7) 

In the following discussion, it is assumed that the 
magnetic field B is uniform in the channel cross- 
section and is oriented along the x direction. Con- 
sequently, the vector notation is dropped in the 
following discussion. 
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The infinite segmentation model is constructed 
from equation (T2) in Table I by neglecting axial 
variations of the flow and electrical variables in com- 
parison with their cross-plane variation. Consc- 
quently, the Hall electric field EZ is assumed to be 
constant in a cross-section plane. The clecfric poten- 
tial tj can be expressed as [6, 14-171 

I) = -=E~+r~(.v,y). (8) 

The first term in equation (8) represents the con- 
tribution of the Hall electric field E,, and q is the 
electrical potential in the cross-section plane Sub- 

stituting equation (8) into equation (7) and equation 
(T2) in Table 1 results in the following equation for 
the two-dimensional function 7(.x, J) : 

where a, = n/(1 +B’). Since EZ is not known CI priori, 
the following potential decomposition is adopted : 

q(x,,lv) = E=rl,~.r.~)+q,(.r,!.). (101 

The two functions q, and q2 are governed by the 
following equations : 

and 

where the elliptical operator L is defined as 

Note that the function q1 is driven by the con- 
ductivity nonuniformity. and yz by both the con- 
ductivity and velocity nonuniformities. Both 9, and 
vl? are independent of E,, which is reduced to a par- 

ameter of the problem. This will be determined later 
from the specification of the external electrical con- 
nection and loading. Assuming a Faraday electrical 
connection, the cross-section averaged Hall current 

density (.I:> is identically zero. Thus, the Hall electric 
field E; may be expressed as : 

(14) 

The current densities Ji, .&.. and .I= are calculated using 
Ohm’s law (equation (T3). Table t). 

3. BOUNDARY AND [NLET CQNDiTIONS 

Boundary conditions for the functions g , and r/Z are 
defined by the channel configuration, For a Faraday 

CATHODE 

connection, several types of boundary conditions may 
bc used for the potential equation [6, 131. In this 
paper, we express the electrical boundary conditions 
in terms of the external load resistance. The difference 
of potential (qH-qo) and the cross-section average 

current density {I,,} arc r&ted through the external 

resistance CR,), the electrode pitch (p,), and the chan- 
nel width ( W) by 

(J,.)P, W4 = vu-‘70. (15) 

From Ohm’s law, Jr+pJ, = n(E=++~B). which for a 

Faraday connection leads to 

QJ,} = CG>E:+{(C~P)B. (li-3 

To obtain decoupled boundary 

that in equation (16). 

conditions, we assume 

<PJ,> = uo<~[,~>. (17) 

Combining equations (15), (16), and (17) and noting 
the arbitrariness in II,,, it follows that 

f~~=ff~=O at _r=O (19 

<a> 
41 = qjyi WR, at y = H (19 

and 

The extent of inaccuracy introduced by the approxi- 
mation of equation (17) is generally less than 1% of 
the power density [14]. The external resistance and 

the electrode pitch are allowed to vary in the axial 
direction, with their variations specitied as input data 
[13]. The Hall electric field E_ is determined by equa- 
tion (14). This type of Faraday connection with its 
associated boundary conditions is presented in Fig. I. 

Slip and no-slip boundary conditions can be 
imposed on the velocity fields. In the case of a no-slip 
boundary condition at the wall, the law of the wall is 
used for turbulent flows. In the case of a slip boundary 
condition (i.e. symmetry), a zero-derivative condition 
is applied to all scalar variables and tangential velocit- 
its. The channel geometry is prescribed through the 
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specifications of the axial distributions of the channel 

height and width. Boundary conditions for the energy 
equations are specified by the imposition of the exper- 

imental wall temperature. 

4. STATE EQUATIONS 

To close the system of fluid dynamic and electrical 
equations, it is necessary to establish relationships 
between the fluid properties and the selected solution 
transport (u, r, )I’, I?, II). Although several alternatives 
are possible, in this paper thermodynamic and elec- 
trical properties were calculated using the NASA com- 
puter code [ 181 and are curve fitted with fourth-order 
interpolation polynomials in p and h. The ideal gas 

law was assumed. 

5. SOLUTION PROCEDURE 

The MHD model presented in Table I is solved by 
using a parabolic marching technique in the axial 
direction [9] and an elliptic solution procedure in the 
cross-stream directions. For elliptic equations, faster 
convergence can be obtained by using multiple grids 
and continuously cycling the solution on coarse and 
fine grids. As a result, ANL developed a new multigrid 
computer code called MGMHD [l3]. In this code, the 
cross-stream plane continuity and elliptic momentum 
equations are solved simultaneously by an FAS 
BLIMM algorithm [19, 201, and the cross-stream 
elliptic potential equations are solved using an FAS 
multigrid procedure [21]. The main features of the 
MGMHD computer code are described in the fol- 
lowing sections. 

5.1. The mdtigrid concept 

The concept of the multigrid technique can be 
explained as follows. Consider a set of linear finite 
difference equations, 

L”WM = B”, (21) 

for a general elliptic operator L (for example, equation 
(13)), where W is the solution vector. Any iterative 
procedure such as Gauss-Seidel, Jacobi, or incom- 
plete LU converges rapidly for the first few iterations 
and very slowly thereafter. A Fourier analysis of the 
error-reduction process shows that these conventional 
iterative procedures are most efficient in smoothing 
out errors of wavelengths comparable to the mesh 
size, but are inefficient in annihilating low-frequency 
components. The multigrid technique is based on the 
premise that each frequency range of error must be 
smoothed on the grid where it is most suitable to 
do so. Consequently, the multigrid technique cycles 
between coarse and fine grids until all frequency com- 
ponents are appropriately smoothed. 

The multigrid method cycles between a hierarchy of 
computational grids Dk with corresponding functions 
Wk, k = I, 2,. , hf. The step size on Dk is hk and 
h I+I = h1/2, so that D” becomes finer as k increases. 

The solution of equation (21) is ultimately searched 
on the finest grid k = M. The auxiliary coarse grids, 

k = I. 2, . , M- I are only used to accelerate the 
convergence rate of the relaxation procedure (iter- 
ation) as explained below. By doubling the mesh size 
in the n and y directions (see Fig. 2, which shows the 
full coarsening technique), several levels of auxiliary 
coarse grids (k = I,. . , M- I) are thus generated. 

In the FAS procedure, the solution is initialized on 
the finest grid M (see Fig. 3). When the relaxation 
procedure (iteration) fails to smooth the residuals at 
the desired theoretical rate on the finest grid M, the 
iterations are stopped on grid M and the residuals 
(B”- L”ww = R”; wM is an approximation to W”) 

are transferred to the next coarser grid (restriction). 
On the coarser grid D” ‘, the equation solved is 

Lk I ,,‘A - I = ~~‘+I:~‘(B”-L”w”)-R”~’ (22) 

where Lhm ’ is the operator on grid Dh- ‘, and I: ’ is 
the operator to restrict (project) the k variables on 
grid k - I. If the residuals Rh ’ of equation (22) do 
not meet the tolerance level on grid k - 1, Rkm ’ is 
restricted to grid k - 2 and a solution of equation (22) 
is sought on grid k - 2. When an accurate solution of 
equation (22) is obtained, the change from the pre- 
vious value M?~ ’ -Ii- ’ wf& is prolongated (bilinear 
interpolation) to grid k. The correction to VV’ is then 

M’k,, = &d +l:~,(~~“~‘-I:-‘~~~,d). (23) 

The iterations on each grid k are continued until 
the required convergence criterion lekl < ck is met, at 
which time the solution vector is transferred to the 
next finer level (8’ is the tolerance level allowed on 
grid k). When the finest level is solved to the desired 

accuracy, the overall solution cycle is terminated. 

5.2. Sequence of calculation steps 
The present procedure offers the economical feature 

of a three-dimensional parabolic procedure in the 
sense that only a two-dimensional computer storage 
is required, even though the flow is three-dimensional 
and the more general set of equations is elliptic. 
Consequently, axial and cross-stream momentum 
equations, as well as the longitudinal and cross-stream 
pressure gradients, are decoupled. 

For simplicity, the hydrodynamic and electrical 

COARSE CR 
CELL 

FIG. 2. Staggered arrangement of velocities and pressures in 
a full coarsening technique. 
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FIG. 3. Flow chart of the multigrid adaptive FAS solution cycle ( W’u is an approximation to W) 

numerical solution schemes are decoupled. The energy 
equation is also solved independently since the tem- 

perature influences are only propagated through the 
viscosity and the density, which are kept constant in 
the iterative solution of the momentum and continuity 
equations. Since several equations are decoupled from 
the others, the following sequence is adopted at each 
axial section until the exit of the channel is reached : 

1. New fluid properties are evaluated at the new 
axial station from the enthalpy and pressure cal- 
culated at the previous axial station. 

2. The electrical potential equations are solved 
using an FAS multigrid procedure, and the elec- 
tric currents and fields are then calculated. 

3. The axial momentum equation is solved using 
the pressure gradient evaluated at the previous 
axial station with a single-grid GausssSeidel 
point relaxation technique. The axial velocity and 
pressure gradient are adjusted to satisfy the inte- 
gral mass-conservation equation. 

4. Cross-sectional plane velocity and pressure fields 
are solved using an FAS BLIMM algorithm [19]. 

5. The equations for the turbulent kinetic energy, 

its dissipation rate, and the enthalpy are then 
solved using a single-grid Gauss-Seidel point 

relaxation technique. 

The cross-section averaged pressurcp is updated using 
its value at the previous station and the newly cal- 
culated axial pressure gradient (step 3). At the inlet 
station, variables are initialized with specified values. 

6. PROCEDURE VALIDATION : 
COMPUTATIONAL RESULTS AND 

COMPARISON WITH EXPERIMENTAL DATA 

The MGMHD computer code was developed to 
predict the three-dimensional flow and electrical per- 
formances of several Faraday and diagonal gener- 
ators. Two simulations, for supersonic and subsonic 
Faraday generators, are briefly reported in this paper. 
Reference [ 131 presents detailed information on these 
simulations. The purpose of these two examples of 
Faraday generator calculations is to show that the 
calculation procedure is adequate to represent the 
main characteristics of Faraday generators. The com- 
putational performance of the multigrid technique 
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FIG. 4. Loft and magnetic field axial distributions for the 
AEDC channel. 

applied to the three-dimensional Faraday generator 

model is emphasized in the following sections. 

6. I. Supersonic Furaduy generator : the AEDC channel 

(test 14) 

The commercial-scale MHD Faraday generator of 
the High-Performance Demonstration Experiment 
(test 14) [22, 231 of the Arnold Engineering Devel- 

opment Center (AEDC) was simulated using the 
MGMHD computer code. In this test, the generator 
is operated in a supersonic mode and delivers an elec- 
trical power of about 23 MWe. The AEDC channel 
is approximately 8.9 m long, with a magnet of 7 m 
active length that can deliver a peak magnetic field of 
3.2 T. The rectangular channel cross-section is non- 
uniform with a 0.49 m x 0.26 m cross-section at the 
channel inlet and a 0.99 m x 0.82 m cross-section at 
the exit. Figure 4 shows the axial distributions of the 

height and width of the channel and the magnetic field 
strength. 

The channel contains 472 electrode pairs with vari- 
able electrode pitch. The first loaded electrode is 
located 0.82 m from the channel entrance. There is 
almost constant resistive loading parameter (resi- 
stance x electrode pitch) of about 0.8 R * m along the 
channel up to Z = 7.7 m, and then the channel is 
gradually unloaded over the last 0.6 m to prevent 
unacceptable voltage gradients in the magnetic field 
fringe. 

The channel wall temperature distribution is taken 
to be the distribution estimated by AEDC at the time 
t = 5 s, at which steady-state conditions and good 

experimental data were obtained. The AEDC-esti- 
mated surface temperature is 1200 K at the channel 

entrance, which drops rapidly to about 850 K at 
Z = 1.5 m and then gradually decreases to 600 K at 
the channel exit. The resistive loading was originally 
selected to give a low supersonic velocity over the 
entire channel length at a magnetic field strength of 
up to 4 T. The nominal distributions of the resistive 
loading parameter, the magnetic field. and the wall 
temperature along the channel are given in refs. 

[22, 231. 
In the following discussion, a vertical plane of sym- 

metry through the center of the channel is assumed. 
This assumption of symmetry is legitimate because 
the electrical potential and hydrodynamic equations 
admit the central vertical plane as a plane of symmetry 
and because the selected inlet and boundary con- 
ditions are assumed uniform. A grid of 28 x 12 com- 
putational nodes with three grid levels is used. The 
axial step size is 4 cm. The plasma enters the channel 
with the inlet conditions shown in Table 4. 

Figure 5 shows the calculated development of the 
transverse channel cross-section velocities at four 
axial locations along the generator length. First, in 

the inlet region of the duct (O-2 m), the flow diverges 
outwardly from the core region to the walls. 

The center of divergence is not at the center of the 
channel but rather about one-third from the top of 
the channel. As the flow progresses downstream. two 
vortex patterns in the left and right sides of the channel 
are created because symmetry is assumed. Further 
down the channel where magnetohydrodynamic inter- 
actions become weaker (Z = 8 m), the flow continues 
to expand toward the duct walls, keeping strong 
secondary velocities in the side-wall regions. The 
maximum secondary flow velocity is about 80 m s- ‘, 
which represents about 7% of the inlet velocity. An 
axial cross-section of the flow development shows that 
the flow enters the channel uniformly and is accel- 
erated in the core of the channel (Fig. 6). 

The flow does not separate at the walls and is super- 
sonic throughout the channel. The predicted axial 
flow velocity in the cathode region is larger than that 
in the anode region, as illustrated in Fig. 6. This trans- 
lates into a prediction of a greater shear stress and 
thus of a greater skin friction coefficient in the cathode 
wall region if the skin friction coefficient is defined 
upon the inlet central axial velocity. 

A more illustrative representation of the axial vel- 
ocity distribution is shown in Fig. 7 by means of 

Table 4. Inlet conditions for the AEDC Faraday generator 

Mass flow rate (kg s- ‘) 49 
Temperature (K) 2804 
Pressure (bar) 2.56 
Conductivity (S mm ‘) 10.20 
Hall parameter 2.1x 
Axial velocity (m s- ‘) II53 
Mach number 1.21 
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a 

O.j 
‘s 

b 

FIG. 7. Axial flow development in the AEDC Faraday channel (test 14) at an axial distance of: (a) 2 m, 
(b) 4 m, (c) 6 m, and (d) 8 m from channel inlet. 

velocity surface plots. As can be seen, only small vel- 
ocity overshoots are observed in the side-wall boun- 
dary layers, indicating that the strong secondary flows 
suppress any flow distortions that could develop in the 
transverse cross-section of the channel. Thus, strong 
secondary flows tend to establish uniform dis- 
tributions of the axial velocity and temperature, which 
improve the global performance of the generator and 
limit the risks of MHD instabilities by current con- 
strictions. 

The predicted hydrodynamic and electrical per- 
formances of the AEDC test 14 were found to be in 

relatively good agreement with previously published 
predictions and experimental data, as can be seen in 

Fig. 8. 

6.2. Subsonic FaradaJj generator: the IEE MARK II 
generator 

The MARK II generator of the Institute of Elec- 

trical Engineering (IEE) facility is an experimental 
subsonic segmented 2 MWe Faraday generator 
designed for short-duration tests [24-271. The gen- 
erator is fired by combustion of diesel fuel in pure 
oxygen. As can be seen in Fig. 9, the axial pressure 



2228 J. X. BOUILLAKU and G. F. BERRY 

a 

9 
D 

l’.O 
I 1 I b I 

0.0 2.0 3.0 4.0 5.0 6.0 ;.o 8.. 0 
Axrrt DISTAIKE (M) 

c 

b 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

d 

0.0 2.D 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
Ax1rr DIsTiwcr fn) 

e 

0 I 2 3 4 5 6 7 8 

AXIN D~srrncr (w) 

FIG. 8. Comparison of the axial distribution of: (a) pressure, (b) Hall voltage, (c) Hall electric field. (d) 
Faraday voltage and (e) Faraday current with experimental data for the supersonic Faraday generator 

(AEDC, test 14). 

distribution compares well with experimental data. MWe) is in close agreement with that experimentally 
The channel is operated subsonically, and the plasma measured (1.60 MWe), as shown in Fig. 10 [24--273. 

is mildly accelerating at the end of the channel active Further details regarding the comparison of the prc- 
length. The predicted extracted electrical power (1.57 dieted and experimental results for the IEE MARK 
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FIG. 9. Comparison of the predicted axial distribution of the 
pressure with experimental data for the MARK II subsonic 

Faraday generator. 

II and AEDC generators can be found in Bouillard et 
al. [ 13,281. Due to space limitations, these details have 
been intentionally omitted in this paper; instead, 
the computational performances of the multigrid 

procedure have been emphasized in the following 
sections. 

7. PROCEDURE COMPUTATIONAL 

PERFORMANCE 

The performance of the multigrid (MGMHD) com- 
puter program was assessed and compared with that 
of the single-grid version (SGMHD) developed earlier 
by Vanka et al. [6]. The SGMHD computer code 
incorporates the same hydrodynamic and electrical 
models as described above. The SGMHD computer 
code also uses a similar marching technique in the 
flow direction, but, unlike MGMHD, it solves the 
uncoupled cross-sectional momentum and electrical 
equations using a single-grid alternating direction 
implicit (ADI) technique. In the following perfor- 
mance assessments and comparisons, the same plas- 
ma properties are used with both codes. The cal- 
culations were performed on an IBM PC-AT 
desktop computer equipped with a 32-bit coprocessor 

board.? 
It is instructive to assess the performance of an 

algorithm by quantifying the workload of each indi- 
vidual task constituting the total calculation 
procedure. Such a task repartition is shown in Table 
5 for several channel sections of the AEDC (test 14) 
generator. In this table, the global calculation pro- 
cedure is first divided into five tasks: the multigrid 
solution of the cross-plane hydrodynamic and elec- 
trical equations, and the single-grid solution of the 
energy, axial momentum, and k-e equations. Then, 
each multigrid task is subdivided into subtasks repre- 
senting the work done on each individual grid. The 
CPU times of each task are expressed in terms of the 

number of fine-grid iterations and work units (WUs). 
In the multigrid procedure, a work unit is defined as 

the equivalent fine-grid iteration number required to 
perform a particular task. The computational work 
done on the coarser grids is expressed in terms of fine- 
grid iteration numbers (i.e. WU = NITER”+ 
NITERM ‘/4+NITER”‘~ 2/4’ + where NITER’ 
is the iteration number on grid k). 

Table 5 displays the averaged computational work- 
load of each task per axial step, which is calculated 

by averaging the total workload of each task for each 
section of the channel. The most expensive task is the 
electrical potential solution, which represents about 
69% of the total computational workload. The multi- 
grid computational work for the solution of the cross- 
plane momentum equations is relatively small and 
represents only about 2% of the total computation 
workload. Single-grid CPU time spent on the energy, 
axial momentum, and k--E equations represents about 
28% of the total computational workload. For the 
same problem (i.e. identical number of cells, cell size, 
and imposed residual errors), a typical breakdown of 
a single-grid procedure such as that used in SGMHD 
is shown in Table 6. 

The solution of the single-grid electrical potential 
equation is by far the most expensive task and repre- 
sents about 98% of the total computational workload. 
Note that the accuracy (ERPOT = 10m2) of the 
potential equations used in these calculations is some- 
what high, and an accuracy ranging between lo- ’ and 
5 x lo- * is usually suitable for most problems. Tables 
5 and 6 show that for an imposed error of IO _ ’ on 
the potential equations, the MGMHD is about five 
times faster than a single-grid code, such as the 
SGMHD, for the test presented here. 

A direct comparison of the convergence history of 
the potential residuals between the SGMHD and the 
MGMHD computer codes is presented in Fig. I1 for 
the first meter of the channel. This figure depicts the 
advantage of the multigrid technique as applied to 
the electrical potential equations (i.e. operator L of 
equation (13)). 

The multigrid procedure allows a drastic reduction 
of the electric potential error-five orders of mag- 
nitude in less than 100 iterations (compared to 300 
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FIG. 10. Comparison of the predicted axial distribution of 
the electrical power with experimental data for the MARK 

II subsonic Faraday generator. 
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FIG. I 1. Comparison of rates of convergence for the eiectricai 
potential solution between the single-grid (SGMHD) and 
multigrid (MGMHD) computer codes (12 x 28 nodes, axial 

step size AZ = 0.04 m). 

iterations needed with SGMHD). Figure I1 provides 
a quick assessment of the computational performance 
of the muItigrid procedure. For example, at an error 
residual of 2 x 10 _ *, the computational speed using a 
multigrid solution technique is improved by a factor 
of 3, which is also reflected in the total CPU execution 
time shown in Table 7. 

Table 7. Comparison of CPU time between the multigrid 
and the single-grid techniques for a Faraday channel simu- 

lation (for the total length of the channel) 
-” -.-._- 

Multigrid Single-grid 
ERPOT (min)t (min)t Speed-up 

-__--- -11 
IO Unstable Unstable 
I Unstable Unstable 

0.1 34 65 2 
0.02 50 150 3 

I- -~_-_ 
‘r PC-AT CPU time. 

8. CONCLUSIONS 

A new n~uitigrid, three”dimensiona1 solution pro- 
cedure was developed and illustrated by simuiat~ons 
of supersonic (AEDC) and subsonic (MARK II) 
Faraday generators. Validated with previously pub- 
lished predictions and experimental data, this new 
procedure performs about three to five times faster 
than the standard single-grid solution procedure. 
With the multigrid procedure, more detailed three- 
dimensional channel calculations can readily be per- 
formed for design purposes. Although the MHD 
model presented in this paper is not a comprehensive 
model, the multigrid methodology described herein 
can easily be extended to incorporate new features 

Table 5. Typical breakdown of the MGMHD procedure averaged computational workload per axial step for the AEDC 
Faraday channel simulation (ERPOT = IO-‘, ERCONT = 5 x IO- ’ ; 12 x 28 nodes, AZ = 0.04 m) 

Cross-plane 
potentials 

Cross-plane 
momentum 

Iterations 
on grid no. 

Channel length (m) I 2 3 

0.0-0.2 316 64 36 
0.2.-0.4 324 66 38 
0.4-0.6 194 56 30 
0.6-0.8 120 48 26 
0.8-1.0 160 58 28 

iterations 
on grid no. 

__I_--.- Energy 
wu 1 2 3 WU (WU) 

Axial 
momentum k-s 

(WU) (WU) 
- 

72 2 3 2 3 4 
75 0 0 I I 4 
56 0 0 I I 4 
46 0 0 1 1 4 
52 0 0 I I 4 

Average task totals 
Total WU : 88 

61 2 4 

6 16 
5 16 
5 14 
5 14 
5 14 

6 15 

Global PC-AT CPU time = 6 min. 

Table 6. Typical breakdown of the SGMHD procedure averaged computational 
workload per axial step for the AEDC Faraday channel sin~u~~tion 

(ERPOT = IO-‘, ERCONT = 5 x IO- ’ ; 12 x 28 nodes, A; = 0.04 m 
-._ 

Channel length Cross-plane Cross-plane Axial 

(ml potentials momentum Energy momentum k-c 
--.._ _...- 

o.u-0.2 2564 9 6 7 18 
0.2-0.4 2052 1 6 7 16 
0.40.6 1202 1 5 6 14 
0.6-0.8 640 4 5 6 14 
0.8-l .o 724 1 5 6 14 

Average WU per task I437 4 6 7 16 
Average WU 1470 

_._- __~.._ -..- ._.- 

Global PC-AT CPU time = 33 min. 
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and/or new models. Such features could be the incor- 

poration of power take-off regions at the inlet and 

the exit of the channel, requiring mixed boundary 
13. 

condition treatment for the electrical potential equa- 

tions in regions of interest. 
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PERFORMANCES DUNE PROCEDURE DE CALCUL MULTIGRILLE 
TRIDIMENSIONNELLE POUR LES GENERATEURS 

MAGNETOHYDRODYNAMIQUES 

R&m&On d&it la formulation et I’evaluation d’une procedure recemment developpee de calcul multi- 
grille aux differences finies pour des Ccoulements magnetohydrodynamiques tridimensionnels (MHD). 
La procedure r&out, en variables primitives, le systtme d’tquations MHD parabolistes permanentes qui 
est constitut des equations de continuite, d’impulsion, d’energie, de I’tnergie cinetique de turbulence, de 
dissipation de turbulence et des equations de Maxwell, en utilisant une technique multigrille, implicite de 
differences finies. Cette nouvelle technique est tout d’abord valid&e en comparant les resultats de la prevision 
avec des donnees experimentales pour les generateurs de Faraday supersoniques et subsoniques. Les 
performances de cette technique sont estimees en termes de vitesse de calcul et de precision de la solution. 
On montre que la resolution des equations elliptiques de Maxwell est limitante du point de vue vitesse de 
calcul. Un facteur global d’amelioration de 335 est obtenu en utilisant la procedure multigrille de differences 

finies. 

DIE LEISTUNGSFAHIGKEIT EINES DREIDIMENSIONALEN MEHRFACHGITTER- 
VERFAHRENS ZUR BERECHNUNG MAGNETOHYDRODYNAMISCHER GENERATOREN 

Zusammenfassung-Es wird die Formulierung und Auswertung eines kiirzlich entwickelten Mehrfachgitter 
Finite-Differenzen-Verfahrens zur Berechnung von stationaren dreidimensionalen magnetohydro- 
dynamischen (MHD) Stromungen beschrieben. Der parabolisierte Satz stationarer Gleichungen fur MHD, 
der aus der Massenbilanz, aus 3 Impulsgleichungen, der Energiegleichung sowie den Gleichungen fur die 
turbulente kinetische Energie und die Dissipationsrate und den Maxwellgleichungen besteht, wird mit 
einfachen Variablen mit Hilfe der genannten Prozedur gel&t. Dabei kommt eine implizite Mehrfach- 
gitter Finite-Differenzen-Methode unter Verwendung einer Naherungsspeicherungsweise zur Anwendung. 
Das neue Verfahren wird zuerst durch Vergleich der erzielten Ergebnisse mit Versuchsdaten von Uber- 
und Unterschall Faraday-Generatoren validiert. Die Leistungsfahigkeit dieses Verfahrens wird dann 
hinsichtlich der Berechnungsgeschwindigkeit und der Genauigkeit bewertet. Es zeigt sich, da13 die 
Auflosung der elliptischen elektrischen Maxwellgleichungen die Berechnungsgeschwindigkeit beschrinkt. 
Durch Verwendung der Mehrfachgitter Finite-Differenzen Losungsprozedur ergibt sich ein globaler Besch- 

leunigungsfaktor von 3-S. 

3@@EKTMBHOCTb MHOFOCETO’4HOFO METOAA PAC’4ETA I-EHEPATOPOB 
TPECMEPHbIX MAI-HWTOI-W~PO~MHAMWIECKHX TErIEHHn 

hllOTa~~-npenCTaBJIeHbI +OpMyJIHpOBKa I( OUeHKa HenaB" pa3pa60TaHHOrO MHOrOCeT04HOrO 

KOHeYHO-pa3HOCTHOrO MeTOna paC'IeTa CTallHOHapHbIX TpeXMepHbIX MarHATOrH~pO,JAHaMAYCCKHX 

(MF~)re9enafi.C licnonb30BameM HemHoro hmoroceTowfor0 KoHewo-pa3HocTHoro MeTona npemo- 

KeHHaR MeTOnNKa n03BOnBeT peI"ATb B IIpOCTeihIHX nepeMeHHbIX CHCTeMy napa6oneqecKex CTPUHO- 

HapHbIX Ml-a )‘paBHeHHii, COCTO5W)‘lO B3 ypaBHeHHSl Hepa3pbIBHOCTU, TpeX )‘paBHeHBfi HMnyJIbCa, 

ypamemr weprm, ypaBHemifi Typ6yneHTHOfi KaHeTmecKofi mepree A CKOPOCTA nuccanawe, a 

TaK)Ke ypaBHeHHii MaKCBenna. HOBbIi( MeTOnCHa'IaJla anpo6apyeTcr nOCpeflCTBOM CpaB"eWiK paNeT- 

HblX pe3yJIbTaTOB C 3KCnepHMeHTaJIbHbIMH flaHIibIM&i &lIS CBepX3ByKOBbIX U LI03ByKOBbIX reHepaTOpOB 

@apanea.SaTeM 3+$ecT5fBHomb MeTona 0uemBaeTcR no C~0p0c-r~ BbIvacnewiii A TOWOCTH peuressa. 

lloKa3aH0,rTo pa3pemam~aaCnOCO6HOCTb 3nnmTmeCKnx ypaBHemfi MaKceenna 0rpamwisaeT CKO- 

pOCTb BbISHCneHAii. c llC~O~b30BaHUeM npei"lOZKeHHOii MeTOnBKII pel"eHAK IIOJIyYeH KOJ+$HUHeHT 

rJIO6bIJIbHOrO yTo9HeHun,COCTaBnKloluug 3-5. 


